Efficiency of the SQUID ratchet driven by external current

نویسنده

  • J Spiechowicz
چکیده

We study theoretically the efficiency of an asymmetric superconducting quantum interference device (SQUID)which is constructed as a loopwith three capacitively and resistively shunted Josephson junctions. Two junctions are placed in series in one arm and the remaining one is located in the other arm. The SQUID is threaded by an externalmagnetic flux and driven by an external current of both constant (dc) and time periodic (ac) components. This system acts as a nonequilibrium ratchet for the dc voltage across the SQUIDwith the external current as a source of energy.We analyze the power delivered by the external current andfind that it strongly depends on thermal noise and the external magneticflux.We explore a space of the systemparameters to reveal a set forwhich the SQUID efficiency is globallymaximal.We detect the intriguing feature of the thermal noise enhanced efficiency and showhow the efficiency of the device can be tuned by tailoring the externalmagnetic flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Rectification by a SQUID Ratchet.

We argue that the phase across an asymmetric dc SQUID threaded by a magnetic flux can experience an effective ratchet (periodic and asymmetric) potential. Under an external ac current, a rocking ratchet mechanism operates whereby one sign of the time derivative of the phase is favored. We show that there exists a range of parameters in which a fixed sign (and, in a narrower range, even a fixed ...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Temperature resistant optimal ratchet transport.

Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter by [A. Celestino et al. Phys. Rev. Lett. 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destr...

متن کامل

Nonsinusoidal current and current reversals in a gating ratchet.

In this work, the ratchet dynamics of Brownian particles driven by an external sinusoidal (harmonic) force is investigated. The gating ratchet effect is observed when another harmonic is used to modulate the spatially symmetric potential in which the particles move. For small amplitudes of the harmonics, it is shown that the current (average velocity) of particles exhibits a sinusoidal shape as...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015